基于人工智能的视频智能分析满足公安业务需求

随着高清IP摄像机的普及,视频监控系统平台的视频接入和存储也越来越多,如何有效利用这些视频资源,挖掘其潜在价值,是用户当前面临的首要问题。未来无疑是智能化的时代,海量数据挖掘的时代,一个更加便捷的时代。这一切的前提都依赖于智能算法、数据挖掘技术不断突破和成熟。

传统的视频监控解决了视频的存储和回放,以及各厂商视频流的互联互通,但仍然无法准确识别、定位和查找视频中的人,车,物等目标信息。目前,要实现全方位的实时监控,指挥调度,视频录像中可疑目标的检索查证,还必须依靠大量的工作人员时刻紧盯屏幕,监视所有摄像机的实况视频,以及回放相关视频录像,查找可疑人员,车辆目标和线索。这显然需要耗费大量人力,而且难免也会因为疲劳和疏忽,而错漏掉某些稍纵即逝的重要信息。

因此,围绕公安业务需求的公安实战平台,结合视频图像侦查业务,对监控画面中感兴趣的目标视频进行智能分析,提取可疑的人、车、物等目标信息,生成结构化的语义描述,从而实现特定目标的快速定位、查找和检索。人工智能在视频内容的特征提取、内容理解方面有着天然的优势。前端摄像机内置人工智能芯片,可实时分析视频内容,检测运动对象,识别人、车属性信息,并通过网络传递到后端人工智能的中心数据库进行存储。汇总的海量城市级信息,再利用强大的计算能力及智能分析能力,人工智能可对嫌疑人的信息进行实时分析,给出最可能的线索建议,将犯罪嫌疑人的轨迹锁定由原来的几天,缩短到几分钟,为案件的侦破节约宝贵的时间。其强大的交互能力,还能与办案民警进行自然语言方式的沟通,真正成为办案人员的专家助手。

基于人工智能的视频智能分析是利用计算机图像视觉处理、模式识别和机器学习等算法,分析和识别运动目标信息。作为公安实战平台中最为重要的环节,基于人工智能的人脸识别技术需求应用更为迫切。

公安部门借助人脸卡口IPC摄像机的智能人脸检测技术,在城市道路、广场、娱乐场所及各类重点场所的人员目标的人脸识别,提取包括人的性别、戴眼镜、年龄段等特征信息。从而实现人脸的实时布控、高危人员比对、以图搜图、语义搜索等方面的业务应用。比如,人脸布控业务是通过对场景中视频的进行实时人脸采集和视频分析,并与各种人脸库提供的图片(警综、信综、出入境、人口库、追逃库、犯罪人员库等)进行实时比对。如果发现重点关注人员,将推送到公安实战平台客户端或手机终端。另外公安实战平台与全国人口库、常住人口库、居住证人口库等数据关联,实现城市地铁、机场、酒店的人脸识别系统的联动。结合地图业务应用,可实现轨迹回放、告警、查询的可视化。

另外,事实上,在安防领域的人脸识别处于一种非常复杂的状态的制约。实际监控场所得到的人脸图片质量不高,距离研究领域的图片,例如,光照,姿态,表情,饰物,遮挡,运动模糊,分辨率等都影响着人脸识别算法的实际应用推广。已有的训练算法,或者说已有的训练数据无法表达出一个具有很强泛化能力的算法模型。

未来人脸识别模型如果需要取得突破,一方面需要更多更丰富的海量的样本数据,如各种光照,姿态,表情下的人脸图像。另一方面,深度学习模型还可以进一步优化和调整。

本文内容来源自互联网,如您觉得侵犯了您的权益, 请联系我,本站将立刻删除!

本文链接:https://www.yxhiot.com/article/710.html